Quote:
Originally Posted by crosscountry55
To be more specific, in this case, F=mg, where "g" is approximately 9.8ms^2, the gravitational acceleration of an object in a vacuum near the surface of the earth. But of course it's not a vacuum because there is friction from the air on the way down. Not that the poor girl will give said friction much credit when the rim hits her on the head.
I once majored in physics before I took up basketball officiating.
|
Quote:
Originally Posted by Camron Rust
And I doubt the friction would amount to anything interesting from the velocity the rim might achieve from a height of 10'. From a 100 feet, maybe, but still not too much.
|
Excellent work here gentlemen. But as a physics teacher, I feel I must bring the idea of energy transfer to the table. Assuming we can ignore the work done by non-conservative forces here (I.e. friction) then the amount of gravitational potential energy the rim transfers to the floor is given by mgh, using a mass in kilograms and a height in meters, of course.